Hand-in sheet 3 – Statistical Physics B

- Please hand in your solution before Thursday 5 December 2024, 16:15.
- You can hand in your solutions in digital format as a pdf-file. Make sure to provide a file name which contains the hand-in number, your name, and your student number. You can send your solution to jeffrey.everts AT fuw.edu.pl. Also include your name and student number in the pdf file.
- In case of paper format, please do not forget to write your name and student number.
- Make sure to answer every question as completely as possible. When you do calculations, provide sufficient explanation for all steps.
- In total 100 points can be earned.

Effective interactions of charged surfaces in an electrolyte

Consider an external charge distribution $eQ(\mathbf{r})$ consisting of particles/external surfaces with center of mass positions $\{\mathbf{R}^N\}$ and an ionic charge distribution $eq(\mathbf{r})$ consisting of monovalent ions, i.e. $q(\mathbf{r}) = \rho_+(\mathbf{r}) - \rho_-(\mathbf{r})$. We are interested in the effective interactions that can occur between the various bodies that constitute $Q(\mathbf{r})$. We connect the system to a reservoir where the external charge distribution is absent, characterized by ionic chemical potentials μ_{\pm} and bulk ion concentrations $\rho_{\rm b}$. The external surfaces exert external potentials $V_{\pm}^{\rm ext}(\mathbf{r})$ on the ions. Furthermore, the ions reside in a solvent that is modeled as a dielectric continuum with relative permittivity $\epsilon_{\rm r}$. Non-Coulombic interactions between ions are neglected.

- (a) (10 points) Write down the grand potential functional $\Omega_{\rm V}[\rho_{\pm}; \mathbf{R}^N]$ of this system within the mean-field approximation and explain in detail what the various terms represent.
- (b) (15 points) Introduce the dimensionless electrostatic potential $\phi(\mathbf{r}) = \beta e \psi(\mathbf{r})$, given by

$$\phi(\mathbf{r}) = \ell_{\rm B} \int d\mathbf{r}' \, \frac{Q(\mathbf{r}') + q(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|},$$

with $\ell_{\rm B}$ the Bjerrum length. Give an expression for $\ell_{\rm B}$ and discuss what it physically represents. show that

$$\beta\Omega_{\rm V}[\rho_{\pm};\mathbf{R}^N] = \sum_{\alpha=\pm} \int d\mathbf{r} \,\rho_{\alpha}(\mathbf{r}) \left[\ln \frac{\rho_{\alpha}(\mathbf{r})}{\rho_{\rm b}} - 1 \right] + \frac{1}{2} \int d\mathbf{r} \,\phi(\mathbf{r})[Q(\mathbf{r}) + q(\mathbf{r})].$$

(c) (15 points) Derive from $\Omega_V[\rho_{\pm}; \mathbf{R}^N]$ the Poisson-Boltzmann equation

$$abla^2 \phi(\mathbf{r}) = \kappa^2 \sinh[\phi(\mathbf{r})] - 4\pi \ell_{\rm B} Q(\mathbf{r}).$$

Give an expression for κ and discuss what it physically represents.

(d) (15 points) Define $W(\mathbf{R}^N) = \min_{\rho_{\pm}} \Omega_V[\rho_{\pm}; \mathbf{R}^N]$ and show that

$$\beta W(\mathbf{R}^N) = \rho_{\rm b} \int d\mathbf{r} \left[\phi(\mathbf{r}) \sinh \phi(\mathbf{r}) - 2 \cosh \phi(\mathbf{r})\right] + \frac{1}{2} \int d\mathbf{r} Q(\mathbf{r}) \phi(\mathbf{r})$$

What is the physical meaning of $W(\mathbf{R}^N)$?

(e) (10 points) Determine $W(\mathbf{R}^N)/V$ for N = 0 (no external surfaces), with V being the system volume. How do you interpret this quantity?

(f) (15 points) Take $Q(\mathbf{r}) = \sigma \delta(z - H/2) + \sigma \delta(z + H/2)$. Write down the relevant Poisson-Boltzmann equation and derive the corresponding boundary conditions. Assuming σ to be small, linearise the corresponding Poisson-Boltzmann equation (i.e., $|\phi(\mathbf{r})| \ll 1$) and show that

$$\phi(z) = \frac{y \cosh(\kappa z)}{\sinh(\kappa H/2)},$$

with $y = 4\pi \ell_{\rm D} \ell_{\rm B} \sigma$.

(g) (20 points) Derive the disjoining pressure from W(H) for $\kappa H \gg 1$,

$$\beta P(H) = 8\pi \ell_{\rm B} \sigma^2 \exp(-\kappa H).$$

Is P(H) an osmotic pressure? Motivate your answer.